Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells
نویسندگان
چکیده
Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy.
منابع مشابه
15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملThe Effect of Wild Type P53 Gene Transfer on Growth Properties and Tumorigenicity of PANC-1 Tumor Cell Line
The p53 protein function is essential for the maintenance of the nontumorigenic cell phenotype. Pancreatic tumor cells show a very high frequency of p53 mutation. To determine if restoration of wild type p53 function can be used to eliminate the tumorigenic phenotype in these cells, pancreatic tumor cell lines, PANC-1 and HTB80, differing in p53 status were stably transfected with exogenous wil...
متن کاملEffects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity
Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the sin...
متن کاملToll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha).
Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in end...
متن کامل